- GRENVILLE-WELLS, H. J. (1956). Acta Cryst. 9, 709. HAMILTON, W. C. (1955). Acta Cryst. 8, 185.
- HENDRICKS, S. B. (1933). Z. Kristallogr. 84, 85.
- HUFFMAN, H. M., PARKS, G. S. & DANIELS, A. C. (1930).
- J. Amer. Chem. Soc. 52, 1547.
- KAUZMANN, W. (1942). Rev. Mod. Phys. 14, 12.
- KLUG, A. (1947). Nature, Lond. 160, 570.
- LONSDALE, K. (1931). Proc. Roy. Soc. A, 133, 536. MORGAN, S. O. & YAGER, W. A. (1940). Ind. Eng. Chem.
- 32, 1519. PHILLIPS, D. C. (1956). Acta Cryst. 9, 237.
- SEKI, S. & CHIHARA, H. (1949). Sci. Pap. Osaka Univ. 1, 1.
- WHITE, A. H., BIGGS, B. S. & MORGAN, S. O. (1940).
- J. Amer. Chem. Soc. 62, 16.

Acta Cryst. (1958). 11, 14

Crystal Structures of Zr₅Ge₃, Ta₅Ge₃ and Cr₅Ge₃

BY ERWIN PARTHÉ* AND JOHN T. NORTON⁺

Massachusetts Institute of Technology, Cambridge, Mass., U.S.A.

(Received 1 July 1957)

The crystal structures of Zr_5Ge_3 , Ta_5Ge_3 , Ta_5Ge_3 and Cr_5Ge_3 have been examined by means of Debye-Scherrer diagrams and compared with the corresponding silicides. Cr_5Ge_3 crystallizes in the T1 type structure with $a = 9.41_3$ Å and $c = 4.78_0$ Å. Ta_5Ge_3 crystallizes in the T1 structure also, as previously reported, but transforms to the Nowotny structure $(D8_8 \text{ type})$ with $a = 7.58_1$ Å and $c = 5.23_5$ Å if 5% of carbon is added. Zr_5Ge_3 crystallizes directly in the Nowotny structure $(D8_8 \text{ type})$ with $a = 7.99_3$ Å and $c = 5.59_7$ Å. Apparently the residual impurities are sufficient to stabilize this phase in the latter case. The germanide structures are thus the same as the corresponding silicide structures.

Introduction

A comparison of the structures of the silicides and germanides of the transition metals, in so far as the structures have been determined, shows a complete correspondence of structure types, in spite of the fact that the germanium atom is considerably larger than the silicon atom. In the case of the phases with the formula M_5Si_3 it is known that the expected binary phases are frequently replaced by the so-called Nowotny phase having a $D8_8$ type structure, the stabilization of the latter apparently being brought about by the presence of atoms of carbon, boron, oxygen or nitrogen, often in very small amounts (Parthé, 1957). In order to extend the analogy between the silicides and germanides somewhat further, the compounds Zr_5Ge_3 , Ta_5Ge_3 and Cr_5Ge_3 were examined.

Preparation of samples

The specimens were prepared from powders of zirconium hydride, tantalum hydride, chromium, and germanium. The powders were mixed in proper portions in trichlorethylene in a hard-metal ball-mill and the dried powders were hot-pressed in graphite dies. The temperature was 1200° C. and time at temperature about 2 min. Since this temperature was above the melting point of germanium, the pressure was applied slowly.

Cr₅Ge₃

The powder diagram of Cr_5Ge_3 could be indexed to correspond to a tetragonal unit cell with the lattice constants:

$$a = 9.41_3 \text{ Å}, \ c = 4.78_0 \text{ Å}, \ c/a = 0.507 .$$

The extinctions lead to the space group D_{4h}^8 -I4/mcm. The agreement between observed and calculated values of the intensities (Table 1) was obtained if the Cr atoms were placed in positions 4(b) and 16(k) with the parameter $x = 0.07_4$ and $y = 0.22_3$, while the Ge atoms were in positions 4(a) and 8(h) with the parameter x = 0.17. Thus Cr_5Ge_3 has the same structure as Cr_5Si_3 , which is of the T1 type. The lines of the phase Cr_3Ge were also observed in the specimen.

A second specimen to which 5 atomic% carbon was added showed the same T1 structure of the binary phase Cr_5Ge_3 .

Ta₅Ge₃

The specimen prepared from tantalum hydride and germanium confirmed the T1 structure of the binary phase Ta₅Ge₃ reported by Nowotny, Searcy & Orr (1956). With the addition of 5 atomic% carbon, however, the powder pattern was different and recogniz-

^{*} Research Staff, Massachusetts Institute of Technology. † Professor of Metallurgy, Massachusetts Institute of Technology.

ERWIN PARTHÉ AND JOHN T. NORTON

Table 1. Intensity calculation for Cr_5Ge_3 with T1 structure

					$\operatorname{Cr} K\alpha$ rad	liation		
hkl		d (Å)	$(\sin^2 \theta)_c$		$(\sin^2 \theta)_o$	Ic	I_o	Remarks
100			14.81.			0		
110		6.658	29.63			26	_	
001		_	57.45			0		
200		4.703	59.20			4		
220		3.323	118.52		119.2	28.6	vw	
211		3.158	131.52		130.8	66.8	w	
310		2.973	148.15		147.7	40.7	w	
002		2.387	$229 \cdot 80$		230.6	114.0	w	
400		2.350	237.04		236.5	51.5	vw	
321		2.289	250.04		250.0	152	m	
112		$2 \cdot 246$	$259 \cdot 43$			3.3		
330		2.216	266.67		266.8	68.6	vw	
202		$2 \cdot 129$	289.06		288.7	334	8	
420		$2 \cdot 105$	296.30		295.0	312	8	
411		2.058	309.30		308.9	618	vvs	K 210 Cr ₃ Ge
222		1.940	348.32		348.8	167	m	
312		1.861	377.95		—	0.5	—	
510		1.845	385.19		_	5.0	_	
431		1.750	427.82		—	5.8_{5}	_	
402		1.675	466.84		466.9	52.2	w	
440		1.663	474.08		473.8	15.6	vvw	
521		1.640	487.08		486·0	90	mw	
332		1.624	496.47		496.5	84	mw	
53 0		1.613	503.71		501.7	59	vw	
422		1.578	$526 \cdot 10$		_	1.5	—	
600		1.568	533.34		533.1	18.5	vvw	
213		1.4890	591.12)		591.3	9∙8 }	mu d	
620		1.4860	592.60 ∫		0010	38∙0 ∫	<i>cu</i> , u	
611		1.4710	$605 \cdot 60$		—	$2 \cdot 4$	_	
512		1.4598	614.99		—	0.3^{3}	—	
541		1.4036	664.86		_	0.37	—	
442		1.3604	703.88		705.0	$\frac{71}{70}$	w, d	
323		1.3589	709·60 J		F 00 0	72 J	,	
631		1.3450	724.12		722.3	96	vw	
532		1.3370	733.51		500.0	101		72 999 0- 0-
710		1.3300	740.75		730.3	40 26 F	w , a	K 222 Ur ₃ Ge
550 J		1 9105	769.14		769.0	30·3J		
602		1.3105	768.00		762.0	547	vu	
413		1.3058	708.90		707.4	0.1	8	
040		1.3049	200.40		891.7	954		
622 701		1.2021	022·40 049.64		841.6	204	1110 1110	
721		1.2409	842.04		858.2	157	1118	K 391 Cr Ge
130		1.2302	009.21		010.1	1.84	03	11 021 01300
433		1.2152	017.76	~	018.8)	1.04		
004 }	α_1	1.1021	090.80	a ₁	020.7	1260	ms, d	
599 J	α_2	1.1766	046.68	α_2	947.1	697	118	K 211 Cr
923		1.1756	048.1A			10.7		
114		1.1754	948.82			9.2		
651		1.1676	961-16		959.9	32.6	vvvw	
719	N	1.1630) ~	968.99	α-	969.5	1660)	vs	
552	α_1	$1.1611 \qquad \alpha_1$	972.27	α_{1}	972.2	1170		
204	α_2	1.1574	978.46	×2	979.7	6.9	vw	K 400 Cr.Ge
201		1 10/1	010 10				• ••	

able as that of the Nowotny phase with the $D8_8$ structure. The lattice constants were

$$a = 7.58_1 \text{ Å}, \ c = 5.23_5 \text{ Å}, \ c/a = 0.690 .$$

Agreement between the observed and calculated intensities (Table 2) was obtained if the Ta atoms were placed at positions 4(d) and $6(g)_{\rm I}$ with x = 0.25and the Ge atoms at $6(g)_{\rm II}$ with x = 0.61. The space group is D_{6h}^3-C6/mcm . The carbon atoms were not considered in the intensity calculations. As has been shown previously (Nowotny, Parthé, Kieffer & Benesovsky, 1954) for the analogous phase in the system Mo-Si-C, there might be a metal deficiency on the 4(d) position.

Zr₅Ge₃

The specimen prepared from zirconium hydride and germanium powders without carbon addition showed the pattern of the $D8_8$ Nowotny phase directly with no other lines. The lattice constants were

$$a = 7.99_3$$
 Å, $c = 5.59_7$ Å, $c/a = 0.700$,

Table 2. Intensity calculation for $Ta_5Ge_3(C)$ with $D8_8$ structure

Table 3. Intensity calculation for Zr_5Ge_3 with $D8_8$ structure

		$\operatorname{Cr} K \alpha$	radiation			$\operatorname{Cr} K \alpha$ radiation								
hkil	d (Å)	$(\sin^2 \theta)_c$	$(\sin^2 \theta)_o$	Ic	I_o	hkil	d (Å)	$(\sin^2 \theta)_c$	$(\sin^2 \theta)_o$	Ic	I_o			
1010	6.56	30.4		3.92		1010	6.90	27.4		4.35				
0001		47.9	—	0		0001	_	41.9		0				
$11\overline{2}0$	3.78	91.4		3.82	—	$11\overline{2}0$	3.99	82	_	0.02				
$20\overline{2}0$	3.27	122	121.5	27.7	mw	$20\overline{2}0$	3.44	110	_	3.47				
$11\overline{2}1$	3.07	139.3	139.1	26.0	mw	$11\overline{2}1$	3.25	124	_	0.41	_			
0002	2.61	192	190.8	11.3	w	0002	2.79	167.5	168.5	8.68	w			
$21\overline{3}0$	2.48	213	$213 \cdot 2$	49.6	8	$21\overline{3}0$	$2 \cdot 61$	192)	109 5	16.2	,			
$10\overline{1}2$	$2 \cdot 43$	222	221.9	35.4	m	$10\overline{1}2$	2.59	195 👔	193.9	9.10	m, a			
$21\overline{3}1$	2.24	261	260.7	110.0	vvs	$21\overline{3}1$	$2 \cdot 36$	234	234.0	48·3	8			
$30\overline{3}0$	2.18	274	273.0	59.0	8	$30\bar{3}0$	2.31	246)	040 5	26.2)				
$11\overline{2}2$	2.14	284	284.0	95.2	vs	$11\overline{2}2$	2.29	249 Ì	248.5	41.1	s, d			
$20\overline{2}2$	2.04	314		1.92		$20\overline{2}2$	2.17	277 [´]	$276 \cdot 1$	2.35^{\prime}	vw			
$22\overline{4}0$	1.893	365	_	1.56	_	$22\overline{4}0$	1.995	329		0.27				
$31\overline{4}0$	1.819	396		0.98	_	$31\overline{4}0$	1.92	356	355.5	1.23	vvw			
$21\overline{3}2$	1.799	405		0.013		$21\overline{3}\overline{2}$	1.91	359	_	0.01				
$22\overline{4}1$	1.781	413	413·2	1.70	vvw	$22\overline{4}1$	1.88	371	370.6	2.00	1)1)11			
$31\overline{4}1$	1.717	444	442.5	4 ·16	vvw	$31\overline{4}1$	1·81₌	398	397.8	4.92	117			
$30\overline{3}2$	1.675	466	August 1	0.216		$30\overline{3}2$	1.78,	413	_	0.30				
$40\overline{4}0$	1.639	487	486.0	6.75	vw	4040	1.73	438.5	439.1	0.93	2121212/7			
$11\overline{2}3$	1.583	523	522.7	4.44	vvw	1123	1.69	459		0.07				
$22\bar{4}2$	1.533	557	555.7	37.1	ms	$22\overline{4}2$	1.62	496	496.5	10.4	m			
$32\overline{5}0$	1.505	578	576.5	7.22	vw	$32\overline{50}$	1.58	520		0.51				
$31\overline{4}2$	1.492	588	586.8	18.3	w	$31\overline{4}2$	1.58	523	522.7	1.90	21212/1			
$32\overline{5}1$	1.447	626	626.0	35.0	ms	$32\overline{51}$	1.52	562)		8.60	0000			
$41\overline{5}0$	1.431	639	637.8	31.0	ms	$21\overline{3}3$	1.51-	569	569.6	15.8	ms nd			
2133	1.426	645	644.5	$52 \cdot 1$	8	4150	1.50-	576	0000	5.53	<i>mo</i> , <i>o</i> a			
$40\bar{4}2$	1.389	679	677.6	62.8	8	4042	1.471	605	605.7	10.8	472			
4151	1.381	687		0.475	_	4151	1.456	618		0.40	<i></i>			
5050	1.311	762	762.0	3.88	27217	0004	1.397	671	671.0	9.9	432.213			
0004	1.307	767)		4.12)	υw	5050	1.382	685)	011 0	2.87	niw			
$32\overline{5}2$	1.304	770	767.9	5.00	w	3252	1.380	687	687.3	3.68	mw			
2243)	2 001	797		2.72		1014	1.369	698	_	0.20				
	1.282	797	798.1	0.32	vvw	2243	1.362	706	706-6	1.83	212/1			
3360	1.262	823		6.00		3143	1.337	733	734.7	5.80	000			
	1.258	828	825.3	9.05	vw, d	3360	1.330	740)		1.25)	w			
$41\overline{5}2$	1.256	831	832.0	30.9	w. d	4152	1.327	743	743.9	7.30	w			
4260	1.239	853	851.1	66.0	m.s	$11\overline{2}4$	1.319	753		0.003				
1124	1.236	858		2.66		4260	1.306	767	767.9	14.0	222			
3361	1.226	871	871.6	67.0	ms	$20\bar{2}4$	1.295	781)		1.5)	110			
$20\overline{2}4$	1.214	889	890.8	31.3	w.d	3361	1.294	782	782.5	12.4	m			
$42\overline{6}1$	1.205	901	901.4	22.3	vnu, d	4261	1.272	809	810.6	11.2	w d			
			α , 950.9)		,.	5160	1.242	850)	010 0	12.8)	ω, ω			
5052	1.1721	954 {	$\alpha_{2} 953.9$	354	vvs	5052	1.240	852	$852 \cdot 3$	45.0	s, d			
$21\overline{3}4$	1.1563	980	980.1	736	vvs.~d	$21\overline{3}4$	1.232	863	863-3	23.7	ms d			
		•			,	$51\overline{6}1$	1.212	892	891.8	40.2	ms d			
						$32\overline{5}3$	1.208	897	898.3	34.8	ms. d			
which a	no nosa:1	Ju more	nnosino +1	on those -	nononta-l	$33\overline{6}2$	1.201	907	907.6	31.2	ms, a			
	ue possit	лу шоге	precise the	an unose i	$30\overline{3}4$	1.195	917	918.4	86.0	vs. d				
by Carl	son, Arm	istrong &	Wilhelm	(1956).	$42\overline{6}2$	1.184	934	933.9	11.4	w, d				

 $41\bar{5}3$

1.1726

953

On the basis of the same calculations as before, the agreement between observed and calculated intensities was obtained as shown in Table 3. In this case it appears that even the residual impurities in the powders or the slight carbon pick-up from the graphite die is sufficient to suppress the formation of the binary phase that might be expected and to stabilize the ternary Nowotny phase.

Discussion

In Table 4 is shown the presently known information on the parallelism of the structures of silicides and germanides. It appears that in every case where the germanide has been prepared, its structure type is the same as that of the corresponding silicide. The present results show that in Ta_5Ge_3 the situation is exactly analogous to the silicide case; namely that the T1binary phase is stable with low carbon content but that the $D8_8$ Nowotny ternary phase is stabilized if the carbon content is increased. In the case of Zr_5Ge_3 the $D8_8$ phase is stable even with very small impurity content, as is also true of the silicide. Again, in the case of Cr_5Ge_3 the binary T1 phase is stable even with appreciable carbon content, which parallels the corresponding silicide; but it still remains to be shown

3.08

Compound formula	$M_{3}X$ $DA15$		$M_{5}X_{3}$						M	X	MX_2							
Structure type									<u>B20</u>				<u>C49</u>				<i>C</i> 11	
	\mathbf{s}	G	\mathbf{S}	G	\mathbf{S}	G	\mathbf{s}	G	\mathbf{s}	G	\mathbf{S}	G	\mathbf{S}	G	\mathbf{s}	G	\mathbf{s}	G
Titanium Zirconium Hafnium	_	-		_	-	_	+ +	+ +	_	_	+ 	+ -	- + +	+		_		_
Vanadium Niobium Tantalum	+ - ~	+	+ + +	+ +	_ + +	+	+ + +	+ +				_			+ + +	+ +		
Chromium Molybdenum Tungsten	+ + 	+ +	+ + +	+ +	 -}- +		+ + (+)		+ - -	+			 		+		- + +	+
						1	• • • •											

Table 4. Silicides and germanides with transition metals of the 4th to 6th group of the period system

+: structure is formed.

-: structure is not formed.

S = silicide; G = germanide.

References

CARLSON, O. N., ARMSTRONG, P. E. & WILHELM, H. A. (1956). Trans. Amer. Soc. Met. 48, 843.

- Nowotny, H., Parthé, E., Kieffer, R. & Benesovsky, F. (1954). Mh. Chem. 85, 255.
- NOWOTNY, H., SEARCY, A. W. & ORR, J. E. (1956). J. Phys. Chem. 60, 677.

PARTHÉ, E. (1957). Powder Metallurgy Bulletin. 8, 23.

Acta Cryst. (1958). 11, 17

metallic compounds.

The Crystal Structure of L-Leucyl-L-Prolyl-Glycine*

BY YUEN C. LEUNG AND RICHARD E. MARSH

Gates and Crellin Laboratories of Chemistry, California Institute of Technology, Passadena, California, U.S.A.

(Received 15 January 1957)

The crystal structure of the tripeptide leucyl-prolyl-glycine 'mono'-hydrate has been determined by Fourier and least-squares analysis of complete three-dimensional intensity data from copper radiation. The crystals are monoclinic with space group $P2_1$; the unit-cell dimensions are: $a_0 = 9.44$, $b_0 = 6.72$, $c_0 = 12.10$ Å, $\beta = 100.2^{\circ}$. With the exception of a twist required by the presence of the proline ring, the peptide chain is in a highly extended configuration. A surprising feature is the presence of only approximately 80% of a water molecule of crystallization per molecule of tripeptide. In addition, one atom in the pyrrolidine ring of the proline residue is disordered, being located with apparently equal probability on either side of the plane of the other four ring atoms.

Introduction

whether the $D8_8$ phase could be stabilized at higher

carbon contents. It seems clear, however, that the

stability of the T1 binary phase with respect to the

 $D8_8$ phase increases with increasing group number in

the periodic table. Further studies of the germanides

will undoubtedly strengthen this interesting and im-

portant analogy between these two groups of inter-

Accurate determinations of the crystal structures of amino acids and simple peptides are of fundamental importance in arriving at the configurations of polypeptide chains in protein molecules. Such determinations yield information concerning the dimensions of the various components of the polypeptide chain, the methods of packing of the side chains, and the role of hydrogen bonding in determining the spatial arrangements of the chains. The confidence which can be placed in predictions of these various structural features of a protein—and, hence, the confidence with which the structure of a protein as a whole can be predicted—depends directly on both the number and the accuracy of the experimental results derived from the simpler compounds.

The amino acid proline is an important constituent

^{*} Contribution No. 2149 from the Gates and Crellin Laboratories of Chemistry. The work described in this article was carried out under a contract (Nonr-220(05)) between the Office of Naval Research and the California Institute of Technology.